Review of swarm intelligence-based feature selection methods

نویسندگان

چکیده

In the past decades, rapid growth of computer and database technologies has led to large-scale datasets. On other hand, data mining applications with high dimensional datasets that require speed accuracy are rapidly increasing. An important issue these is curse dimensionality, where number features much higher than patterns. One dimensionality reduction approaches feature selection can increase task reduce its computational complexity. The method aims at selecting a subset lowest inner similarity highest relevancy target class. It reduces by eliminating irrelevant, redundant, or noisy data. this paper, comparative analysis different methods presented, general categorization performed. Moreover, in state-of-the-art swarm intelligence studied, recent based on algorithms reviewed. Furthermore, strengths weaknesses studied intelligence-based evaluated. • paper an overview problem provided. Previous categorized advantages disadvantages described. Swarm Intelligence-based Experimental results reported. previous discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Step Swarm Intelligence to Solve the Feature Selection Problem

In this paper we propose a new approach to Swarm Intelligence called Two-Step Swarm Intelligence. The basic idea is to split the heuristic search performed by agents into two stages. In the first step the agents build partial solutions which, are used as initial states in the second step. We have studied the performance of this new approach for the Feature Selection Problem by using Ant Colony ...

متن کامل

Particle Swarm Optimization based Feature Selection

Feature Selection is a pre-processing step in knowledge discovery from data (KDD) which aims at retrieving relevant data from the database beforehand. It imparts quality to the results of data mining tasks by selecting optimal feature set from larger set of features. Various feature selection techniques have been proposed in past which, unfortunately, suffer from unavoidable problems such as hi...

متن کامل

Performance Evaluation of Content-Based Image Retrieval on Feature Optimization and Selection Using Swarm Intelligence

The diversity and applicability of swarm intelligence is increasing everyday in the fields of science and engineering. Swarm intelligence gives the features of the dynamic features optimization concept. We have used swarm intelligence for the process of feature optimization and feature selection for content-based image retrieval. The performance of content-based image retrieval faced the proble...

متن کامل

Book Review: Computational Methods of Feature Selection

Feature selection selects a subset of relevant features, and also removes irrelevant and redundant features from the data to build robust learning models. Feature selection is very important, not only because of the curse of dimensionality, but also due to emerging data complexities and quantities faced by multiple disciplines, such as machine learning, data mining, pattern recognition, statist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Applications of Artificial Intelligence

سال: 2021

ISSN: ['1873-6769', '0952-1976']

DOI: https://doi.org/10.1016/j.engappai.2021.104210